A Market Model with error terms following symmetric-asymmetric distribution family and Decomposition of Jensen's Alpha

: Theoretical and empirical study with Stock market data

Ryozo Miura

Hitotsubashi University and Tohoku University.

(This is a joint study with Navruzbek Karamatov, Tohoku University.)

Motivation

Our main interest is firstly in the shape of the residual distribution which is seen in stock market data analysis based on a simple linear regression mode, and secondly the comparison of two estimation method for the slope parameter β : Usual OLS and Estimates based on Rank statistics (R-estimates in short).

As it is known well, R-estimate can estimate β without necessarily estimating the intercept parameter α . Also it is Robust against outliers.

In the performance study for stock portfolios, Jensen's α is of main interest. Our study reveals how this is related to the degree of asymmetry in the distribution of residuals.

Model and Estimation Method.

Error terms $\boldsymbol{\varepsilon}_i$ are i.i.d and η_i have a distribution G(x- $\boldsymbol{\mu}$) in the following simple linear regression model which is called Market Model in the field of Finance.

 $Y_i = \alpha + \beta X_i + \boldsymbol{\varepsilon}_i \dots \dots (1) \quad \text{and } \eta_i = Y_i - \beta X_i = \alpha + \boldsymbol{\varepsilon}_i \dots \dots (2). \text{ for } i = 1, \dots, n.$

GLAM (Generalized Lehmann's Alternative Model) is a semi-parametric model and its parameter can be estimated based on rank statistics (Miura and Tsukahara (1993)).

Let Θ be an interval in real line.

A function h(t; θ) for t \in (0,1) and $\theta \in \Theta$ which satisfies the following (1) and (2) is called the Generalized Lehmann's Alternative model:

(1) $h = (0;\theta) = 0$ and $h(1;\theta) = 1$ for any $\theta \in \Theta$. $h(t;\theta)$ is strictly monotone function of t.

(2) There exists $\theta * \in \Theta$ such that $h(t; \theta *) = t$ for $t \in (0, 1)$.

And for $\theta_1 < \theta_2$, $h(t; \theta_1) < h(t; \theta_2)$ for all $t \in (0, 1)$.

Then, we assume that η_i follows $G(x : \mu, \theta) = h(F(x-\mu); \theta) = 1-(1-F(x-\mu))^{\theta}$. F is unknown except its symmetry. The parameters θ and μ are estimated using the residuals (after estimating β). Results.

We used the stock prices data in three markets: Tokyo, New York and London. The shape of residuals distribution brought by the two methods look different or about the same depending on the individual stock and the time period. A decomposition of α into a sum of μ and "asymmetry effect" will be shown among many other results.