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Given data vectors {xi}ni=1 ⊂ Rp and an index set I(U)
n ⊂ {1, 2, . . . , n}U for p, n, U ∈ N,

we consider an observed hyperlink weight wi ∈ S(⊂ R) representing the association strength
among U-tuple Xi, that is an unordered collection of U vectors xi1 ,xi2 , . . . ,xiU indexed by
i = (i1, i2, . . . , iU), for all i ∈ I(U).

An example consisting of such U -tuples and their hyperlink weights is co-authorship
network, where xi represents attributes of the researcher i ∈ {1, 2, . . . , n} such as the number
of publications in each of journals, and the hyperlink weight wi ∈ N0 represents the number
of co-authored papers written by all the U researchers indexed by i ∈ I(U)

n .

In this talk, we propose Bregman hyperlink regression (BHLR), that predicts tuple’s hy-
perlink weight wi through the corresponding tupleXi, by learning a user-specified symmetric
similarity function µθ(Xi). The similarity function can employ non-linear functions such as
neural networks, for fully enjoying the high expressive power. BHLR learns the similarity
function by minimizing Bregman-divergence (BD)

Dϕ({wi}, {µθ(Xi)}) :=
1

|I(U)
n |

∑
i∈I(U)

n

dϕ(wi, µθ(Xi)),

where dϕ(a, b) := ϕ(a) − ϕ(b) − ϕ′(b)(a − b) and ϕ : dom(ϕ) → R is a user-specified strictly
convex function whose domain dom(ϕ) includes the set S. Then, BHLR encompasses many
of existing methods, such as logistic regression (U = 1), Poisson regression (U = 1), graph
embedding (U = 2), matrix factorization (U = 2), tensor factorization (U ≥ 3), and their
variants equipped with arbitrary BD, as special cases.

Regardless of the choice of ϕ and U , we theoretically show that the proposed BHLR is (P-
1) robust against distributional misspecification, namely, it asymptotically recovers
the underlying true conditional expectation of tuple’s weight regardless of the conditional
distribution of the weights, and (P-2) computationally tractable, namely, it is efficiently
computed by stochastic algorithms using a proposed minibatch sampling procedure for hyper-
relational data. These properties are obtained by generalizing Okuno and Shimodaira (2019).
We also conduct some numerical experiments on a real-world dataset.
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