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1 Introduction
In this research, we consider optimization problems
where the objective is a negative Gaussian log-likelihood
with two penalty terms. This minimization problem es-
timates the sparse inverse of its input covariance matrix;
sparse covariance selection [Dem72]. The first penalty
of `1-norm regularization term ensures a sparse solu-
tion, i.e., one with few nonzero entries, while the sec-
ond penalty enhances block partitions in the parameter
space. One of the well-known application of this estima-
tion problem is Markowitz’s portfolio selection [Mar52],
where the inverse of covariance matrix is needed as its
input. We propose to apply (a) Alternating Direction
Method of Multipliers (ADMM) algorithm [Boy+11]
and (b) Quadratic Approximation Method [Hsi+11] for
solving the problem of sparse covariance selection.

2 Problem Setup
Given a set of i.i.d. data of Yt = {y1,t, · · · ,yn,t}, t ∈
{1, · · · , T} drawn from p-variate Gaussian distribution
of N (y;µ,Σ). Let the empirical covariance matrix be-
tween Yi and Yj is given by

Sij :=
1

n

∑
k,l

(yk,i − µ̂i)(yl,j − µ̂j)
>,

where µ̂i = 1
n

∑
k yk,i. Consider a stationary-time pro-

cess such that the multiperiodic inverse covariance ma-
trix X can be expressed as

X =


X11 X12 X13 · · · X1,T

X>12 X22 X23 · · · X2,T

X>13 X>23 X33 · · · X3,T

...
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...
. . .
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X>1,T X>2,T X>3,T · · · XT,T
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We assume that X is a stationary time-process, such
that Xi,i+h = Xj,j+h for all i, j. Given some regular-
ization penalty λ1 > 0, λ2 > 0, the `1 and `2 regular-
ized Gaussian MLE for the inverse covariance matrix
can be estimated by solving the following regularized
log-determinant program:

argmin
X�0

{
− ln detX +

∑
i,j

trace
(
S>ijXij

)
+ λ1

∑
i,j

‖Xij‖1

+ λ2
∑
i,j

∑
k>i,l>j

‖Xij −Xkl‖22

}
=: argmin

Xij�0
f(X)

subject to Xi,i+h = Xj,j+h, ∀i, j. (2.1)

3 Proposed Algorithm
(a) ADMM algorithm
Firstly, the objective function f comprises of two parts,
f(X) ≡ g(X) + h(X), where

g(X) = − ln detX +
∑
i,j

trace
(
S>ijXij

)
,

h(X) = λ1
∑
i,j

‖Xij‖1 + λ2
∑
i,j

∑
k>i,l>j

‖Xij −Xkl‖2F .

The first component g(X) is twice differentiable and

strictly convex, while the second part h(X) is convex
but non-differentiable.
Then, we can write Equation (2.1) into the following
optimization problem.

minimize g(X) + h(Z)

subject to X̃ = Z̃
(3.1)

where
h(Z̃) = λ1

∑
i,j

‖Z1‖1 + λ2
∑
i,j

‖Z2‖2F ,

X̃ =
[
(X′)>, (DX′)>, (HX′)>

]>
, Z̃ =

[
(Z1)>, (Z2)>, (0)>

]>
for appropriate matrices D and H that represent set
of time difference matrices and set of stationary time
difference matrices, respectively. The augmented La-
grangian of Equation (3.1) is

Lρ(X̃, Z̃,Y) = g(X) + h(Z̃) + (ρ/2)

∥∥∥∥X̃− Z̃ +
Y

ρ

∥∥∥∥2
F

.

Therefore, the iteration of ADMM is given as:
X̃-update:

X̃(k) := argmin
X̃

(
g(X) +

ρ

2

∥∥∥∥∥X̃− Z̃(k) +
Y(k)

ρ

∥∥∥∥∥
2

F

)
,

Z̃-update:

Z̃(k) := argmin
Z̃

(
h(Z̃) +

ρ

2

∥∥∥∥∥X̃(k+1) − Z̃ +
Y(k)

ρ

∥∥∥∥∥
2

F

)
,

Ỹ-update:
Y(k+1) :=Y(k) + ρ

(
X̃(k+1) − Z̃(k+1)

)
.

(b) Quadratic Approximation
The summary of the algorithm is given as follows:
Input: Empirical covariance matrices S, time difference T,

scalar values of λ1, λ2, inner stopping tolerance ε

Output: Minimizer X of f(X).
1: for k = 0, 1, · · · do
2: Compute W(t) =

(
X(t)

)−1
.

3: Form the second order approximation of f(X(t)+∆).
4: Partition the variables into free and fixed sets based

on the gradient.
5: Use coordinate descent to find the Newton direction

D(t) over the free variable set.
6: Use an Armijo-rule based step-size selection to get α.
7: Update X(t+1) = X(t) + αD(t).
8: end for

4 Conclusion
Both algorithms show consistency on the optimal val-
ues and as we can see from the following table that
Quadratic Approximation method runs much faster
compared to the ADMM algorithm.

T
n = 20 n = 30

(a) (b) (a) (b)
1 179.65 0.75 283 2.11
2 418.25 1.9 739.43 4.22
3 876.94 5.71 1725.67 12.84

Table 1: Runtime (in seconds) for both algorithms.
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