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1 Introduction

In this research, we consider optimization problems
where the objective is a negative Gaussian log-likelihood
with two penalty terms. This minimization problem es-
timates the sparse inverse of its input covariance matrix;
sparse covariance selection [Dem72|. The first penalty
of /1-norm regularization term ensures a sparse solu-
tion, i.e., one with few nonzero entries, while the sec-
ond penalty enhances block partitions in the parameter
space. One of the well-known application of this estima-
tion problem is Markowitz’s portfolio selection [Mar52|,
where the inverse of covariance matrix is needed as its
input. We propose to apply (a) Alternating Direction
Method of Multipliers (ADMM) algorithm [Boy+11|
and (b) Quadratic Approximation Method [Hsi+11] for
solving the problem of sparse covariance selection.

2 Problem Setup

Given a set of i.i.d. data of Yy = {y1,¢," - ,¥nt},t €
{1,---,T} drawn from p-variate Gaussian distribution
of N(y;pn,X). Let the empirical covariance matrix be-
tween Y; and Y is given by
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where f1; = % >4 Y&,i- Consider a stationary-time pro-
cess such that the multiperiodic inverse covariance ma-
trix X can be expressed as
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We assume that X is a stationary time-process, such
that X i4n = Xj j4n for all 4,5. Given some regular-
ization penalty A1 > 0,2 > 0, the ¢; and /> regular-
ized Gaussian MLE for the inverse covariance matrix
can be estimated by solving the following regularized
log-determinant program:

argmin{ —Indet X + Ztrace (S;;X”) + A1 Z 1%l
X0 irj i\j

Y Xy - Xl } —: argminf(X)

. k>i,l>j Xij>0

subject to Xi,i+h = Xj7j+h,vi,j‘ (21)
3 Proposed Algorithm

(a) ADMM algorithm

Firstly, the objective function f comprises of two parts,

F(X) = g(X) + h(X), where
g(X) =—Indet X + Ztrace <S;§-Xij> ,
¥
) =X 3 Il + 22D D K = Xl
0,3 i,J k>i,l>j
The first component g(X) is twice differentiable and
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strictly convex, while the second part h(X) is convex
but non-differentiable.
Then, we can write Equation into the following
optimization problem.

minimize  ¢(X) + h(Z) (3.1)
subject to X =7Z '
where ~
WZ) =Xy N1 Zally + A2 ) l|Z2] %,

: b T
X =[x)7,x)7, (HX)T] [(21)7,(22)T, (0)7]
for appropriate matrices D and H that represent set
of time difference matrices and set of stationary time

difference matrices, respectively. The augmented La-
grangian of Equation (3.1) is

S 5 ~ = - Y
Lp(X,2,Y) = g(X) +h(Z) + (p/2) | X —Z + n
Therefore, the iteration of ADMM is given as:
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(b) Quadratic Approximation

The summary of the algorithm is given as follows:
Input: Empirical covariance matrices S, time difference T,

scalar values of A1, A2, inner stopping tolerance €
Output: Minimizer X of f(X).
1: for k=0,1,--- do
2 Compute W) = (X<t))71.
3: Form the second order approximation of f(X () 4 A).
4: Partition the variables into free and fixed sets based
on the gradient.
5: Use coordinate descent to find the Newton direction
D® over the free variable set.
6: Use an Armijo-rule based step-size selection to get .
7 Update X(¢+1) = X(®) 4 oD®),
8: end for

4 Conclusion

Both algorithms show consistency on the optimal val-
ues and as we can see from the following table that
Quadratic Approximation method runs much faster
compared to the ADMM algorithm.

T n = 20 n = 30

@ [ ® [ @ [ ®
1 179.65 0.75 283 2.11
2 418.25 1.9 739.43 4.22
3 | 876.94 | 5.71 | 1725.67 | 12.84

Table 1: Runtime (in seconds) for both algorithms.
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